On Stirling Numbers for Complex Arguments and Hankel Contours
نویسندگان
چکیده
Cauchy coeecient integrals and Hankel contours provide a natural generalization of Stirling numbers for unrestricted complex values of their arguments. Many classical identities survive such an extension. Sur les nombres de Stirling d'indice complexe et les contours de Hankel R esum e : Les int egrales de Cauchy et les contours de Hankel fournissent une g en eralisation naturelle des nombres de Stirling, ce pour des valeurs complexes ar-bitraires de leurs indices. De nombreuses identit es classiques survivent a une telle g en eralisation. Abstract. Cauchy coeecient integrals and Hankel contours provide a natural generalization of Stirling numbers for unrestricted complex values of their arguments. Many classical identities survive such an extension.
منابع مشابه
Stirling Numbers for Complex Arguments
We define the Stirling numbers for complex values and obtain extensions of certain identities involving these numbers. We also show that the generalization is a natural one for proving unimodality and monotonicity results for these numbers. The definition is based on the Cauchy integral formula and can be used for many other combinatorial numbers.
متن کاملGeneralized Stirling numbers, exponential Riordan arrays and orthogonal polynomials
We define a generalization of the Stirling numbers of the second kind, which depends on two parameters. The matrices of integers that result are exponential Riordan arrays. We explore links to orthogonal polynomials by studying the production matrices of these Riordan arrays. Generalized Bell numbers are also defined, again depending on two parameters, and we determine the Hankel transform of t...
متن کاملOn Stirling Numbers and Euler Sums
In this paper, we propose the another yet generalization of Stirling numbers of the rst kind for non-integer values of their arguments. We discuss the analytic representations of Stirling numbers through harmonic numbers, the generalized hypergeometric function and the logarithmic beta integral. We present then in nite series involving Stirling numbers and demonstrate how they are related to Eu...
متن کاملGeneralized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations
We study the properties of three families of exponential Riordan arrays related to the Stirling numbers of the first and second kind. We relate these exponential Riordan arrays to the coefficients of families of orthogonal polynomials. We calculate the Hankel transforms of the moments of these orthogonal polynomials. We show that the Jacobi coefficients of two of the matrices studied satisfy ge...
متن کاملOrthogonal Polynomials and Smith Normal Form
Smith normal form evaluations found by Bessenrodt and Stanley for some Hankel matrices of q-Catalan numbers are proven in two ways. One argument generalizes the Bessenrodt–Stanley results for the Smith normal form of a certain multivariate matrix that refines one studied by Berlekamp, Carlitz, Roselle, and Scoville. The second argument, which uses orthogonal polynomials, generalizes to a number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 12 شماره
صفحات -
تاریخ انتشار 1999